Fork me on GitHub

probfit

probfit is a set of functions that helps you construct a complex fit. It’s intended to be used with iminuit. The tool includes Binned/Unbinned Likelihood estimator, \(\chi^2\) regression, Binned \(\chi^2\) estimator and Simultaneous fit estimator. Normalization and Convolution with cache are also included. Various builtin function that’s normally used in B physics is also provided.

Download & Install

From pip:

pip install probfit

or get the latest development from github:

git clone git://github.com/iminuit/probfit.git

Tutorial

Tutorial is in the tutorial directory. You can view it online too.

Commonly used API

Refer to Full API Documentation for complete reference.

Cost Functions.

Refer to Cost Function.

UnbinnedLH UnbinnedLH(f, data, weights=None, extended=False, extended_bound=None, extended_nint=100, badvalue=-100000)
BinnedLH BinnedLH(f, data, bins=40, weights=None, bound=None, badvalue=1000000, extended=False, use_w2=False, nint_subdiv=1)
Chi2Regression Chi2Regression(f, x, y, error=None, weights=None)
BinnedChi2 BinnedChi2(f, data, bins=40, weights=None, bound=None, sumw2=False, nint_subdiv=1)
SimultaneousFit SimultaneousFit(factors=None, *arg, prefix=None, skip_prefix=None)

Functors

Refer to Functor

Normalized Normalized(f, bound, nint=300, warnfloat=1)
Extended Extended(f, extname=’N’)
Convolve Convolve(f, g, gbound, nbins=1000)
AddPdf AddPdf(prefix=None, *arg, factors=None, skip_prefix=None)
AddPdfNorm AddPdfNorm(facname=None, *arg, prefix=None, skip_prefix=None)
rename(f, newarg) Rename function parameters.

And corresponding decorator

normalized(bound[, nint]) Normalized decorator
extended([extname]) Extended decorator

Builtin Functions

Refer to Builtin PDF. This list can grow: implement your favorite function and send us pull request.

gaussian((double x, double mean, ...) Normalized gaussian.
crystalball((double x, double alpha, ...) Unnormalized crystal ball function ..
cruijff((double x, double m_0, ...) Unnormalized cruijff function ..
cauchy((double x, double m, ...) Cauchy distribution aka non-relativistic Breit-Wigner
rtv_breitwigner((double x, double m, ...) Normalized Relativistic Breit-Wigner
doublegaussian((double x, double mean, ...) Unnormalized double gaussian ..
argus((double x, double c, double chi, ...) Unnormalized argus distribution ..
linear _Linear()
poly2((double x, double a, double b, ...) Parabola ..
poly3((double x, double a, double b, ...) Polynomial of third order ..
novosibirsk((double x, double width, ...) Unnormalized Novosibirsk
HistogramPdf HistogramPdf(hy, binedges, xname=’x’)
Polynomial Polynomial(order, xname=’x’) ..

Useful utility

You may find these functions useful in interactive environment.

vector_apply(f, x, *arg) apply f to array x with given arguments fast. This is a fast
draw_pdf(f, arg, bound[, bins, scale, ...]) draw pdf with given argument and bounds.
draw_compare_hist(f, arg, data[, bins, ...]) draw histogram of data with poisson error bar and f(x,*arg).

Table Of Contents

Next topic

Full API Documentation

This Page